Aleksandra Łęczek, Beata Jastrzębska
Ekstrakcja zabudowy z wykorzystaniem wysokorozdzielczych ortofotomap oraz morfologii matematycznej Building extraction using high-resolution orthophotos and mathematical morphology Urban Development Issues, vol. 72, 29–41. https://doi.org/10.51733/udi.2021.72.03
Słowa kluczowe: ekstrakcja zabudowy, ortofotomapa, Poznań, MBI, MSI
Keywords: building extraction, orthophotomap, Poznań, MBI, MSI |
ABSTRAKT
Niniejsze badania stanowią próbę implementacji metod morfologii matematycznej do analizy wysokorozdzielczych zdjęć fotogrametrycznych w celu ekstrakcji zabudowy. Do analizy wykorzystano ortofotomapy składające się z 3 kanałów w barwach rzeczywistych (RGB), pochodzące z centralnego zasobu Głównego Urzędu Geodezji i Kartografii (GUGiK). Dane te cechuje dobra dostępność i wysoka rozdzielczość przestrzenna. Analizie poddano zobrazowania optyczne dla testowego obszaru na terenie gminy Komorniki, w obszarze podmiejskim Poznania. Przy pomocy morphological building index (MBI), morphological shadow index (MSI) oraz wskaźników kształtu podjęto próbę automatycznej detekcji budynków oraz ich cieni. Dokładność ekstrakcji zabudowy wyniosła około 64%.
Niniejsze badania stanowią próbę implementacji metod morfologii matematycznej do analizy wysokorozdzielczych zdjęć fotogrametrycznych w celu ekstrakcji zabudowy. Do analizy wykorzystano ortofotomapy składające się z 3 kanałów w barwach rzeczywistych (RGB), pochodzące z centralnego zasobu Głównego Urzędu Geodezji i Kartografii (GUGiK). Dane te cechuje dobra dostępność i wysoka rozdzielczość przestrzenna. Analizie poddano zobrazowania optyczne dla testowego obszaru na terenie gminy Komorniki, w obszarze podmiejskim Poznania. Przy pomocy morphological building index (MBI), morphological shadow index (MSI) oraz wskaźników kształtu podjęto próbę automatycznej detekcji budynków oraz ich cieni. Dokładność ekstrakcji zabudowy wyniosła około 64%.
ABSTRACT
This study is an attempt to implement mathematical morphology methods for the analysis of high-resolution photogrammetric images in order to extract buildings. The analysis was based on 3 spectral bands in real colors (RGB) of orthophotomaps from the Head Office of Geodesy and Cartography. The advantage of the data used is their availability and high spatial resolution. Raster images were analyzed for a test area located in the municipality of Komorniki, which is a suburban area of Poznań. With the help of Morphological building index (MBI), Morphological shadow index (MSI) and shape indicators, an attempt was made to automatically detect buildings and their shadows. The accuracy of building extraction was about 64%.
This study is an attempt to implement mathematical morphology methods for the analysis of high-resolution photogrammetric images in order to extract buildings. The analysis was based on 3 spectral bands in real colors (RGB) of orthophotomaps from the Head Office of Geodesy and Cartography. The advantage of the data used is their availability and high spatial resolution. Raster images were analyzed for a test area located in the municipality of Komorniki, which is a suburban area of Poznań. With the help of Morphological building index (MBI), Morphological shadow index (MSI) and shape indicators, an attempt was made to automatically detect buildings and their shadows. The accuracy of building extraction was about 64%.
REFERENCES
Arnold C.L., Gibbons C.J., 1996, Impervious surface coverage: The emergence of a key environmental indicator, Journal of the American Planning Association, 62(2), 243–258. https://doi.org/10.1080/01944369608975688.
Attarzadeh R., Momeni M., 2017, Object-based rule sets and its transferability for building extraction from high resolution satellite imagery, Journal of the Indian Society of Remote Sensing, 46(2), 169–178. https://doi.org/10.1007/s12524-017-0694-6.
Avudaiammal R., Elaveni P., Selvan S., Rajangam V., 2020, Extraction of Buildings in Urban Area for Surface Area Assessment from Satellite Imagery based on Morphological Building Index using SVM Classifier, Journal of the Indian Society of Remote Sensing, 48(9), 1325–1344. https://doi.org/10.1007/s12524-020-01161-0.
Benediktsson J.A., Pesaresi M., Amason, K., 2003, Classification and feature extraction for remote sensing images from urban areas based on morphological transformations, IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949. https://doi.org/10.1109/tgrs.2003.814625.
Blaschke T., 2003, Object-based contextual image classification built on image segmentation, IEEE Conference: Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, November 2003, 113–119. https://doi.org/10.1109/warsd.2003.1295182.
Blaschke T., 2010, Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.
Deng J., Wang K., Li J., Deng Y., 2009, Urban Land Use Change Detection Using Multisensor Satellite Images, Pedosphere, 19(1), 96–103. https://doi.org/10.1016/s1002-0160(08)60088-0.
Dudzik S., 2017, Zastosowanie transformacji TOB-HAT do przetwarzania sekwencji termogramów, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 54, 35-38. http://dx.doi.org/10.14313/PAR_233/11.
Dutta D., Sarkar N.M.K., 2005, Urban building inventory development using very high resolution remote sensing data for urban risk analysis, International Journal of Geoinformatics, 1(1), 109–116.
Florczyk A.J., Ferri S., Syrris V., Kemper T., Halkia S., Soille P., Pesaresi M., 2016, A new european settlement map from optical remote sensed data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1978–1992. https://doi.org/10.1109/jstars.2015.2485662.
Gaździcki J., Michalak J., Musiał E. (red.), 2011, Internetowy leksykon geomatyczny, Polskie Towarzystwo Informacji Przestrzennej. Dostępne na: https://www.ptip.info/leksykon [data dostępu: 15.05.2021].
Hu J., Chen W., Li X., He X., 2008, Roof confusion removal for accurate vegetation extraction in the urban environment, International workshop on earth observation and remote sensing Applications. 30 June-2 July 2008, Beijing, China, 1–7. https://doi.org/10.1109/EORSA.2008.4620309.
Hu L., Zheng J., Gao F., 2011, A building extraction method using shadow in high resolution multispectral images, IEEE international geoscience and remote sensing symposium, 1862–1865. https://doi.org/10.1109/igarss.2011.6049486.
Hu R., Huang X., Huang Y., 2014, An enhanced morphological building index for building extraction from high-resolution images, Acta Geodaetica et Cartographica Sinica, 43, 514–520. http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0084.
Huang X., Zhang L., Li P., 2007, Classification and extraction of spatial features in urban areas using high resolution multispectral imagery, IEEE Geoscience and Remote Sensing Letters, 4(2), 260–264. https://doi.org/10.1109/lgrs.2006.890540.
Huang X., Zhang L., 2011, A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery, Photogramm. Engineering and Remote Sensing, 77(7), 721–732. http://dx.doi.org/10.14358/PERS.77.7.721.
Huang X., Zhang L., 2012, Morphological building/shadow index for building extraction from high-resolution imagery over urban areas, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 161–172. https://doi.org/10.1109/jstars.2011.2168195.
Huang X., Zhang L., Zhu T., 2014, Building change detection from multitemporal high-resolution remote sensed images based on a morphological building index, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 105–115. https://doi.org/10.1109/jstars.2013.2252423.
Huang X., Yuan W., Li J., Zhang L., 2017, A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2), 654–668. https://doi.org/10.1109/jstars.2016.2587324.
Jarzmik A., 2020, EGiB – zasady, formy udostępniania oraz jakość danych, Urban Development Issues, 66(1), 163–172. https://doi.org/10.2478/udi-2020-0020.
Jelonek J., Wyczałek I., 2006, Automatyczna detekcja zmian urbanistycznych na zdjęciach lotniczych, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 16, 249–257.
Jin X., Davis C.H., 2005, Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information, EURASIP Journal on Advances in Signal Processing, 2005(14). https://doi.org/10.1155/asp.2005.2196.
Kadhim N., Mourshed M., Bray M., 2015, Automatic extraction of urban structures based on shadow information from satellite imagery. Presented at: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7-9 December, 2015. Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2607–2614.
Konstantinidis D., Stathaki T., Argyriou V., Grammalidis N., 2017, Building Detection Using Enhanced HOG–LBP Features and Region Refinement Processes, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 888-905. https://doi.org/10.1109/JSTARS.2016.2602439.
Kumar A., Pandey A., Jeyaseelan A., 2012, Built-up and vegetation extraction and density mapping using WorldView-II, Geocarto International, 27(7), 557–568. https://doi.org/10.1080/10106049.2012.657695.
Lee S.D., Shan J., Bethel J.S., 2003, Class-guided building extraction from IKONOS imagery, Photogrammetric Engineering and Remote Sensing, 69(2), 143–150. https://doi.org/10.14358/pers.69.2.143.
Lefèvre S., Weber J., Sheeren D., 2007, Automatic building extraction in VHR images using advanced morphological operators, Proceedings of IEEE/ISPRS joint workshop on remote sensing and data fusion over urban areas (URBAN), April 11–13 2007, Paris, France, 1–5. https://doi.org/10.1109/urs.2007.371825.
Lin X., Zhang J., 2017, Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery, Acta Geodaetica et Cartographica Sinica, 46(6), 724–733. https://doi.org/10.11947/j.AGCS.2017.20170068.
Łachowski W., 2020, Analiza zmian powierzchni nieprzepuszczalnych w badaniu suburbanizacji na przykładzie Poznania, Urban Development Issues, 66(1), 45–58. https://doi.org/10.2478/udi-2020-0010.
Marmol U., 2009, Integracja danych lidarowych i fotogrametrycznych w procesie automatycznego wykrywania obiektów, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 20, 275–284.
Wang Y., 2016, Automatic extraction of building outline from high resolution aerial imagery, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 419–423. https://doi.org/10.5194/isprs-archives-xli-b3-419-2016.
Wei Y., Zhao Z., Song J., 2004, Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection, IEEE International Geoscience and Remote Sensing Symposium, 3, 2008–2010. https://doi.org/10.1109/igarss.2004.1370742.
Xu H., 2008, A new index for delineating built-up land features in satellite imagery, International Journal of Remote Sensing, 29(14), 4269–4276. https://doi.org/10.1080/01431160802039957.
Xu R., Liu J., Xu J., 2018, Extraction of high-precision urban impervious surfaces from Sentinel-2 multispectral imagery via modified linear spectral mixture analysis, Sensors, 18(9), 2873. https://doi.org/10.3390/s18092873.
You Y., Wang S., Ma Y., Chen G., Wang B., Shen M., Liu W., 2018, Building detection from VHR remote sensing imagery based on the Morphological Building Index, Remote Sensing, 10(8), 1287. https://doi.org/10.3390/rs10081287.
Zha Y., Gao J., Ni S., 2003, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987.
Źródła internetowe i bazy danych
Baza Danych Obiektów Topograficznych (BDOT10k), www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot [data dostępu: 15.05.2021].
Ewidencja Gruntów i Budynków (EGiB), https://www.geoportal.gov.pl/dane/dane-ewidencyjne [data dostępu: 10.11.2021].
Global Human Settlement Layer (GHSL), https://ghsl.jrc.ec.europa.eu/ [data dostępu: 12.11.2021].
Główny Urząd Geodezji i Kartografii (GUGiK), https://www.gugik.gov.pl/ [data dostępu: 15.05.2021].
Arnold C.L., Gibbons C.J., 1996, Impervious surface coverage: The emergence of a key environmental indicator, Journal of the American Planning Association, 62(2), 243–258. https://doi.org/10.1080/01944369608975688.
Attarzadeh R., Momeni M., 2017, Object-based rule sets and its transferability for building extraction from high resolution satellite imagery, Journal of the Indian Society of Remote Sensing, 46(2), 169–178. https://doi.org/10.1007/s12524-017-0694-6.
Avudaiammal R., Elaveni P., Selvan S., Rajangam V., 2020, Extraction of Buildings in Urban Area for Surface Area Assessment from Satellite Imagery based on Morphological Building Index using SVM Classifier, Journal of the Indian Society of Remote Sensing, 48(9), 1325–1344. https://doi.org/10.1007/s12524-020-01161-0.
Benediktsson J.A., Pesaresi M., Amason, K., 2003, Classification and feature extraction for remote sensing images from urban areas based on morphological transformations, IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949. https://doi.org/10.1109/tgrs.2003.814625.
Blaschke T., 2003, Object-based contextual image classification built on image segmentation, IEEE Conference: Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, November 2003, 113–119. https://doi.org/10.1109/warsd.2003.1295182.
Blaschke T., 2010, Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.
Deng J., Wang K., Li J., Deng Y., 2009, Urban Land Use Change Detection Using Multisensor Satellite Images, Pedosphere, 19(1), 96–103. https://doi.org/10.1016/s1002-0160(08)60088-0.
Dudzik S., 2017, Zastosowanie transformacji TOB-HAT do przetwarzania sekwencji termogramów, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 54, 35-38. http://dx.doi.org/10.14313/PAR_233/11.
Dutta D., Sarkar N.M.K., 2005, Urban building inventory development using very high resolution remote sensing data for urban risk analysis, International Journal of Geoinformatics, 1(1), 109–116.
Florczyk A.J., Ferri S., Syrris V., Kemper T., Halkia S., Soille P., Pesaresi M., 2016, A new european settlement map from optical remote sensed data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1978–1992. https://doi.org/10.1109/jstars.2015.2485662.
Gaździcki J., Michalak J., Musiał E. (red.), 2011, Internetowy leksykon geomatyczny, Polskie Towarzystwo Informacji Przestrzennej. Dostępne na: https://www.ptip.info/leksykon [data dostępu: 15.05.2021].
Hu J., Chen W., Li X., He X., 2008, Roof confusion removal for accurate vegetation extraction in the urban environment, International workshop on earth observation and remote sensing Applications. 30 June-2 July 2008, Beijing, China, 1–7. https://doi.org/10.1109/EORSA.2008.4620309.
Hu L., Zheng J., Gao F., 2011, A building extraction method using shadow in high resolution multispectral images, IEEE international geoscience and remote sensing symposium, 1862–1865. https://doi.org/10.1109/igarss.2011.6049486.
Hu R., Huang X., Huang Y., 2014, An enhanced morphological building index for building extraction from high-resolution images, Acta Geodaetica et Cartographica Sinica, 43, 514–520. http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0084.
Huang X., Zhang L., Li P., 2007, Classification and extraction of spatial features in urban areas using high resolution multispectral imagery, IEEE Geoscience and Remote Sensing Letters, 4(2), 260–264. https://doi.org/10.1109/lgrs.2006.890540.
Huang X., Zhang L., 2011, A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery, Photogramm. Engineering and Remote Sensing, 77(7), 721–732. http://dx.doi.org/10.14358/PERS.77.7.721.
Huang X., Zhang L., 2012, Morphological building/shadow index for building extraction from high-resolution imagery over urban areas, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 161–172. https://doi.org/10.1109/jstars.2011.2168195.
Huang X., Zhang L., Zhu T., 2014, Building change detection from multitemporal high-resolution remote sensed images based on a morphological building index, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 105–115. https://doi.org/10.1109/jstars.2013.2252423.
Huang X., Yuan W., Li J., Zhang L., 2017, A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2), 654–668. https://doi.org/10.1109/jstars.2016.2587324.
Jarzmik A., 2020, EGiB – zasady, formy udostępniania oraz jakość danych, Urban Development Issues, 66(1), 163–172. https://doi.org/10.2478/udi-2020-0020.
Jelonek J., Wyczałek I., 2006, Automatyczna detekcja zmian urbanistycznych na zdjęciach lotniczych, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 16, 249–257.
Jin X., Davis C.H., 2005, Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information, EURASIP Journal on Advances in Signal Processing, 2005(14). https://doi.org/10.1155/asp.2005.2196.
Kadhim N., Mourshed M., Bray M., 2015, Automatic extraction of urban structures based on shadow information from satellite imagery. Presented at: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7-9 December, 2015. Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2607–2614.
Konstantinidis D., Stathaki T., Argyriou V., Grammalidis N., 2017, Building Detection Using Enhanced HOG–LBP Features and Region Refinement Processes, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 888-905. https://doi.org/10.1109/JSTARS.2016.2602439.
Kumar A., Pandey A., Jeyaseelan A., 2012, Built-up and vegetation extraction and density mapping using WorldView-II, Geocarto International, 27(7), 557–568. https://doi.org/10.1080/10106049.2012.657695.
Lee S.D., Shan J., Bethel J.S., 2003, Class-guided building extraction from IKONOS imagery, Photogrammetric Engineering and Remote Sensing, 69(2), 143–150. https://doi.org/10.14358/pers.69.2.143.
Lefèvre S., Weber J., Sheeren D., 2007, Automatic building extraction in VHR images using advanced morphological operators, Proceedings of IEEE/ISPRS joint workshop on remote sensing and data fusion over urban areas (URBAN), April 11–13 2007, Paris, France, 1–5. https://doi.org/10.1109/urs.2007.371825.
Lin X., Zhang J., 2017, Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery, Acta Geodaetica et Cartographica Sinica, 46(6), 724–733. https://doi.org/10.11947/j.AGCS.2017.20170068.
Łachowski W., 2020, Analiza zmian powierzchni nieprzepuszczalnych w badaniu suburbanizacji na przykładzie Poznania, Urban Development Issues, 66(1), 45–58. https://doi.org/10.2478/udi-2020-0010.
Marmol U., 2009, Integracja danych lidarowych i fotogrametrycznych w procesie automatycznego wykrywania obiektów, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 20, 275–284.
Wang Y., 2016, Automatic extraction of building outline from high resolution aerial imagery, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 419–423. https://doi.org/10.5194/isprs-archives-xli-b3-419-2016.
Wei Y., Zhao Z., Song J., 2004, Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection, IEEE International Geoscience and Remote Sensing Symposium, 3, 2008–2010. https://doi.org/10.1109/igarss.2004.1370742.
Xu H., 2008, A new index for delineating built-up land features in satellite imagery, International Journal of Remote Sensing, 29(14), 4269–4276. https://doi.org/10.1080/01431160802039957.
Xu R., Liu J., Xu J., 2018, Extraction of high-precision urban impervious surfaces from Sentinel-2 multispectral imagery via modified linear spectral mixture analysis, Sensors, 18(9), 2873. https://doi.org/10.3390/s18092873.
You Y., Wang S., Ma Y., Chen G., Wang B., Shen M., Liu W., 2018, Building detection from VHR remote sensing imagery based on the Morphological Building Index, Remote Sensing, 10(8), 1287. https://doi.org/10.3390/rs10081287.
Zha Y., Gao J., Ni S., 2003, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987.
Źródła internetowe i bazy danych
Baza Danych Obiektów Topograficznych (BDOT10k), www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot [data dostępu: 15.05.2021].
Ewidencja Gruntów i Budynków (EGiB), https://www.geoportal.gov.pl/dane/dane-ewidencyjne [data dostępu: 10.11.2021].
Global Human Settlement Layer (GHSL), https://ghsl.jrc.ec.europa.eu/ [data dostępu: 12.11.2021].
Główny Urząd Geodezji i Kartografii (GUGiK), https://www.gugik.gov.pl/ [data dostępu: 15.05.2021].